skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cadrin, Steven X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding population dynamics is essential for achieving sustainable and productive fisheries. However, estimating recruitment in a stock assessment model involves the challenging task of identifying a self-sustaining population, which often includes representing complex geographic structure. A review of several case studies demonstrated that alternative stock assessment models can influence estimates of recruitment. Incorporating spatial population structure and connectivity into stock assessment models changed the perception of recruit- ment events for a wide diversity of fisheries, but the degree to which estimates were impacted depended on movement rates and relative stock sizes. For multiple population components, estimates of strong recruitment events and the productivity of smaller population units were often more sensitive to connectivity assumptions. Simulation testing, conditioned on these case studies, suggested that accurately accounting for population structure, either in management unit definitions or stock assessment model structure, improved recruitment estimates. An understanding of movement dynamics improved estimation of connected sub-populations. The challenge of representing geographic structure in stock assessment emphasizes the importance of defining self- sustaining management units to justify a unit-stock assumption. 
    more » « less